
Automatically Testing Interacting Software Components ∗

Leonard Gallagher
Information Technology Laboratory

National Institute of Standards and Technology
Gaithersburg, MD 20899, USA

lgallagher@nist.gov

Jeff Offutt
Information and Software Engineering

George Mason University
Fairfax, VA 22030, USA

offutt@ise.gmu.edu

ABSTRACT
One goal of integration testing of object-oriented software
is to ensure objects inter-operate correctly, that is, ensure
that messages between objects have the intended effect on
the state of the receiving objects. This is especially diffi-
cult when software is comprised of components developed
by different vendors, with different languages, and the im-
plementation sources are not all available. A previous paper
presented a model of inter-operating OO classes based on fi-
nite state machines, methods for transforming the model
into a data flow graph that represents state variable uses of
a class that is being newly integrated into an existing com-
ponent or system, and algorithms and database queries that
automatically generate tests to satisfy data flow test crite-
ria. The previous paper presented empirical results from an
automatic tool that was built to support this test method.
This paper presents details about the tool itself, including
how several difficult problems were solved and new capabili-
ties that were not available in the previous paper. The result
is a new approach to automated testing that follows accepted
theoretical procedures while operating directly on an object-
oriented software specification to produce a data flow graph
and executable test cases that adequately cover the graph
according to classical graph coverage criteria, thereby sup-
porting specification-based testing and helping to bridge the
gap between theory and practice.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Integration testing, OO testing, data flow, model-based test-
ing, inter-operability

∗The second author is sponsored in part by National Insti-
tute of Standards and Technology (NIST), Software Diag-
nostics and Conformance Testing Division (SDCT).

1. INTRODUCTION
Many object-oriented applications are constructed from a
combination of previously written, externally obtained com-
ponents with some new components added for specialization.
Source is often not available for the previously written com-
ponents, yet new objects must interoperate via messages
with objects in the existing components. This research is
concerned with ensuring that objects inter-operate correctly,
particularly when new objects are added to existing compo-
nents.

In this paper, a class is the basic unit of semantic abstrac-
tion and each class is assumed to have state and behavior [2,
11]. A component is a closely related collection of classes,
and components inter-operate to provide needed functional-
ity. Each component is assumed to be a separate executable,
thereby allowing asynchronous behavior. An object is an in-
stance of a class. Each object has state and behavior, where
state is determined by the values of variables defined in the
class, and behavior is determined by methods defined in the
class that operate on one or more objects to read and modify
their state variables. The behavior of an object is modeled
as the effect the method has on the variables of that object
(the state), together with the messages it sends to other ob-
jects. Variables declared by the class that have one instance
for each object are called instance variables, and variables
that are shared among all objects of the class (static in Java)
are class variables. This research is independent of program-
ming language and the paper uses a mix of Java and C++
terminology.

Behavior of objects is captured as a set of transition rules for
each method and described as finite state machines [3, 4, 12].
A transition is triggered by a call to a method with a partic-
ular signature, and is comprised of a source state, a target
state, an event, a guard, and a sequence of actions. Events
are represented as calls to member functions of a class. A
guard is a predicate that must be true for the transition to
be taken; guards are expressed in terms of predicates over
state variables (possibly from multiple classes) and input pa-
rameters to the method. An action is performed when the
transition occurs; actions are usually expressed as assign-
ments to class member variables, calls sent to other objects,
and values that are returned from the event method. A se-
quence of actions is assumed to be a block of statements in
which all operations are executed if any one is executed.

Pre-conditions and post-conditions of methods can be de-



rived directly from the transitions. The pre-condition is a
combination of the predicates of the source state and the
guard; the post-condition is the predicate of the target state.
Note that the post-condition derived from a transition is
not the strongest post-condition. If the tester desired, state
definitions could be more refined, allowing stronger post-
conditions, which would yield larger graphs and more tests.
Whether to do so is a choice of granularity that results in a
cost versus potential benefit tradeoff.

A state transition specification for a class is the set of state
transition rules for each method of the class. Given a state
transition specification for each class, the goal of this re-
search is to construct test specifications that are used to
construct an executable test suite. Hong et al. [8] developed
a class-level flow graph to represent control and data flow
within a single class. Our previous paper [6] extended their
ideas to integration testing of multiple interacting classes.
The state transition specification is stored in a relational
database. Transitions that are relevant to the class under
test are used to create a component flow graph, which in-
cludes control and data flow information. Classical data
flow test criteria are applied to this graph and converted to
test specifications in the form of candidate test paths, and
then to executable test cases.

In traditional data flow testing [5], the tester is provided
with pairs of definitions and uses of variables (def-use pairs),
and then attempts to find tests to cover those def-use pairs.
This research stores information about the specification in
the database, represents object behavior as branch choices
in a directed graph, provides the tester with full def-use
paths instead of just def-use pairs, and provides control
mechanisms to construct calls of external methods that force
traversal of the identified paths.

2. BEHAVIOR IN A DIRECTED GRAPH
A combined class state machine represents the variables,
methods, parameters, states and transitions of all state tran-
sition specifications for all classes in a system of interoper-
ating components. If a specific component is identified as
the test component in this system, then transitions from the
classes in the test component form the basis of transitions
that are relevant to that component. Relevant transitions
that call mutator methods in other components of the sys-
tem represent outward data flow, whereas transitions that
call actor functions in other components represent inward
data flow. The collection of all transitions in other compo-
nents that have a method so called by a relevant transition
become themselves relevant transitions to the test compo-
nent. The transitive closure of this process defines the col-
lection of relevant transitions for the test component.

A component flow graph represents all data and control flow
relevant to a test component. It is a directed graph derived
from the relevant transitions as follows:

• Every relevant transition is a transition node

• Every state that is either a source state or a target
state of a relevant transition is a state node

• Every non-trivial guard of a relevant transition is a
guard node

S

ss


S

ts


T

t


G

t


Figure 1: Path Derived From a Relevant Transition

• There is a directed edge from every guard node to its
corresponding transition node

• There is a directed edge from every transition node to
its target state

• There is a directed edge from the source state node of
a transition to either the guard node of that transition
or to the transition node itself if the guard is trivially
true

In general, every relevant transition t produces a path in the
component flow graph from its source state node, through
the guard and transition nodes, to the target state node.
This is shown in Figure 1.

The path in Figure 1 represents control flow from the state
that an object is in when a method event is invoked, to the
guard node that evaluates to true, to the action of the tran-
sition with that guard, to the target state of the transition.
Actions on variables are also represented by transitions with
associated get and set methods. Transitions with get (or ac-
tor) methods typically do not have non-trivial guards, and
never change the state of an object, so usually produce paths
in the component flow graph only from state nodes where
the method is defined through the transition node and back
to the same state node.

In multi-class systems, state and guard predicates are al-
lowed to call actor functions from other classes and the ac-
tion of a transition is allowed to invoke actor or mutator
functions in other classes. Control and data flow result-
ing from these actions is represented by edges that connect
nodes from different classes, as follows:

• If a state or guard predicate, or the action of a transi-
tion, calls an actor method in another class, there will
be an edge from every transition node of the called
method back to the node representing the calling state,
guard or transition.

• If the action of a transition calls a mutator function in
another class, there will be an edge from the transition
node that represents that transition to the source state
node of every transition of the called method in the
other class. In addition, if the mutator method returns
a value, there will be an edge from every transition
node of the called method back to the transition node
of the action that makes the call.

To illustrate how the component flow graph represents data
and control flow across communicating objects, consider three
objects, obj1, obj2 and obj3, which are instances of classes
A, B and C. Class A defines a transition t1, which rep-
resents a mutator function f(), and whose action defines a



variable v. This transition as represented in a component
flow graph is presented in Figure 2. The transition node is
T1, the guard node is G1, and Sa and Sb are the source and
target state nodes. Transition nodes that define a variable
are labeled, such as def v on node T1. Uses of v are rep-
resented by points ui on edges and inside transition nodes.
Both Sa and Sb use v (u1 and u3) in their predicate defini-
tions. Function f() is invoked from some other transition,
which is represented by transition node Tx. The get func-
tion for v is represented by transition node Tva if obj1 is in
state Sa when it’s called, and by Tvb if obj1 is in state Sb.

T

x


S

b


G

1


S

a


T

y


T

va


T

1


T

vb


S

d


G

2


S

c


T

2


S

f


G

3


S

e


T

3


call f ()


call h (p)

call g ()


f ()


g ()


h (p)


def v


get v
 get v


u

1


rest


u

2


u

3


u

4
 u


5


u

6
 u


7


Obj1


Obj2


Obj3


Figure 2: Portion of Component Flow Graph

Consider obj2, and a transition t2 (transition node T2). The
guard predicate for t2 (G2) calls the get function for v in
obj1. This get is represented by two edges from obj1, both
labeled by get v. G2 uses v (u4), and for it to evaluate to
true, the mutator function g() must be called by some other
action (represented by Ty) when obj2 is in state Sc. The
action of T2 uses v (u5) and sends a message to obj3 by
invoking the mutator function h(), passing the value of v as
a parameter. Obj2 changes to state Sd as the target state
of transition t2.

Transition t3 handles the function call of h() when obj3 is in
state Se, if the guard predicate for t3 evaluates to true. The
guard of t3 (G3) uses the value of the incoming parameter p,
which has the value of v, represented by use u6. The action
of t3 uses the value in a computation (u7). After the action
of t3 is complete, obj3 changes to the target state Sf .

In the figure, edges from transition nodes to state nodes
that result from calling mutator functions in another class
are labeled with the name of that function (callf(), callg(),
and callh()). Function names are also put on edges from
transition nodes to guard, state, and transition nodes if the
edge is a result of a call to a get function in another class
(get v). Edges from source state nodes to guard and transi-
tion nodes are also labeled with the function that is called
(f(), g(), and h()). These labels are used to access meta-
data about the functions when the component flow graph is
traversed.

In a general data flow graph, uses of a variable in a state
predicate are represented by use labels on all edges leaving
the corresponding state node (u1, u2, u3); uses of a variable
or parameter in a guard predicate are represented by use
labels on all edges leaving the corresponding guard node
(u4, u6). These are called predicate uses. Uses of a variable
in the action of a transition are called computational uses
(u5, u7). Uses of a variable in a passed parameter are called
parameter uses (u6, u7).

To summarize, Figure 2 represents the data and control flow
resulting from definition of variable v by a call of function
f in obj1, the predicate and computational use of v’s value
in obj2, the passing of that value as a parameter to function
h(p), and the resulting predicate and computational param-
eter use of v in the guard and action of t3 in obj3.

3. COVERAGE CRITERIA
A number of different coverage criteria can be defined on
data flow graphs, including all-defs, all-uses and all-paths.
These have been discussed and compared extensively in the
literature [5, 7, 9, 10, 13]. The object-oriented testing method-
ology described here follows the lead of other researchers and
focuses on defs and uses of class variables in each object.
This allows a tester to focus on testing criteria that require
traversal of a def-use path in the component flow graph from
a transition node that defines a variable to a node or edge
that uses the variable, with no re-definition of the variable
at any node along the path.

The all-uses testing criterion applied to a component flow
graph requires tests to execute at least one path from each
definition of a variable at a transition node to each reachable
use at another node or edge. In Figure 2, applying the all-
uses criterion to variable v in class A requires tests that will
force execution of def-use paths from transition node T1 to
each of the uses u1 to u7. In the portion of the component
flow graph pictured, one sees that uses u1 and u2 are not
reachable from T1 and that any path from T1 to u7 will
include subpaths from T1 to each of the uses u3, u4, u5 and
u6.

In general, it is desirable to find two different kinds of paths
in the component flow graph. One is a def-use path from the
definition of a variable to a use that includes as many other
uses as possible. Another is an ext-int path from an external
transition that can be executed by a tester, which in turn
forces execution of other transitions that need to be executed
as part of a def-use path. Both types of paths can be seen
in Figure 2. The path T1 : Sb : Twb : G2 : T2 : Se : G3 : T3

is of the def-use type and paths Tx : Sa : G1 : T1 and
Ty : Sc : G2 : T2 are of ext-int type. In the def-use path,
execution of transition T1 defines v and moves obj1 to the
rest state Sb. Then execution of transition T2 gets the value
of v from obj1 and forces traversal of the remainder of the
path. If the methods of T1 and T2 are internal functions
that cannot be executed directly by a tester, then one must
be able to find external functions that can be executed by a
tester in a sequence that forces traversal of the def-use path.

Construction of def-use paths must satisfy the following prop-
erties:



• Paths must respect the order of execution of state-
ments in the action of a transition

• Function labels on adjacent transition-to-state-to-guard
edges must be identical

• Guard predicates must be feasible with respect to passed
parameters and current state

• Paths that exit and then re-enter a class must satisfy
a state compatibility rule to ensure that the state after
exit is identical to the state of re-entry

Construction of ext-int paths must satisfy all of the proper-
ties of def-use paths, but in addition must not have any rest
states that that would require additional user actions to tra-
verse the path. This ensures that execution of the identified
external transition triggers successive actions that result in
execution of the identified internal transition.

Our previous paper [6] includes an algorithm that allows
construction of both types of paths. Given the set of all
def-use pairs in a component flow graph it is possible to
partition that set as follows:

• Pairs for which a def-use path can be constructed

• Pairs in which the use is provably not reachable from
the def

• Pairs that remain unresolved and for which it is still
unknown whether there exists a feasible, def-free, path
from the def to the use

The generated def-use paths are test specifications for the
all-uses criterion over the component flow graph. Using the
ext-int paths, it is then possible to generate executable test
cases that result in traversal of the test specifications. Cov-
erage is determined by the number of def-use pairs that can
be resolved by a def-free traversal of a test specification from
the identified def to its use.

4. TEST SPECIFICATION COVERAGE
Given test specifications for the all-uses criterion over a com-
ponent flow graph, it is desirable to construct a sequence
of externally executable functions that when executed will
cause traversal of as many of the underlying def-use paths
as possible. A tester begins with each object of the software
system in some initial state. The initial states determine
which external transitions may be executed by calling vari-
ous external functions.

As an illustration of the methodology, consider the three
objects that determined the portion of the component flow
graph in Figure 2. To develop a test sequence for the def-use
path T1 : Sb : Tvb : G2 : T2 : Se : G3 : T3, a tester begins
with objects 1, 2 and 3 in some initial states S1, S2 and
S3. The goal is to execute a sequence of external functions
{Fi|i = 1, 2, ...} that will properly place each object into
states that support execution of the ext-int paths Tx : Sa :
G1 : T1 and Ty : Sc : G2 : T2. The desired sequence of
actions and effects can be seen in Figure 3.

Figure 3 is called a “feather graph,” because there is a pri-
mary path (from the def at T1 to the use at T3), and exter-
nal paths are needed to put the objects represented by the
primary path into the proper states. These external paths
“feather” in to the primary path and are essential to en-
sure controllability [1] of the system under test. First, if
obj3 is not already in state Se, some external function F1

must be executed to move it from initial state S3 to state
Se through some transition T4. Next, if obj2 is not already
in the source state Sy for transition Ty, some external func-
tion F2 must be executed to move it from initial state S2

to state Sy through some transition T5. This must be done
while keeping obj3 in state Se. Next, if obj1 is not already
in the source state Sx for transition Tx, some external func-
tion F3 must be executed to move obj1 from its initial state
S1 to state Sx through some transition T6. Then external
function F4 can be executed while obj1 is in state Sx to
invoke transition Tx, which in turn calls function f , which
results in transition T1, which defines variable v and puts
obj1 in state Sb. State Sb is defined to be a rest state for
the given def-use path; another external method must be in-
voked by the tester to force continued traversal of the path.
Rest states for this and other paths are labeled in the figure.
Next, external function F5 can be executed while obj2 is in
state Sy to invoke transition Ty, which in turn calls func-
tion g that results in transition T2. The action of transition
T2 gets the value of v from obj1 and then sends a message
to obj3 that calls function h and completes traversal of the
desired def-use path from T1 to T3. Note that the def-use
path T1 : Sb : Tvb : G2 : T2 : Se : G3 : T3 has only one rest
state Sb; the other state node in this path, Se, is a rest state
for a different path, i.e. S3 : T4 : Se. The recognition of rest
states for a given path in the component flow graph is an
important part of test case development.

The generated test sequence is F1, F2, F3, F4, F5. Care must
be taken to choose input parameters carefully to ensure that
guard predicates will be satisfied and that the desired transi-
tions will be executed. We have developed tools to automate
the construction of test sequences. These tools are described
further in the following sections.

5. TEST SEQUENCE GENERATION
If an object-oriented software system is represented by a
combined class state machine, and if a specific component of
that system has been identified for integration testing, then
the processes described in Sections 2 and 3 can be used to
construct a component flow graph, a set of def-use candidate
test paths, and a set of ext-int transition triggering paths.
Section 4 gives an example of constructing a single sequence
of external function invocations to force the traversal of a
single def-use path. This section describes a more general
approach for constructing test sequences that force coverage
of as many def-use paths as possible, thereby determining
coverage results for integration testing of the identified com-
ponent with the remainder of the software system.

Let CTP be the set of all def-use paths and EXT the set
of all ext-int paths generated from a component flow graph.
CTP is the set of all candidate test paths that determine
the test specifications for integration testing of the selected
component. Let F be the set of all external functions defined
in the combined class state specification that could be called



G

2


S

b


T

1


T

vb


v ()

T


3

S


e

T


2

G


3


h
h


T

5


S

y


S

c


S

2


T

y


T

4


S

3


F

1


F

5


F

2


g


g


f

f


F

3


F

4


rest


rest


rest


rest


def
 use


G

1


T

6


S

x


S

a


S

1


T

x


Figure 3: External Function Calls to Traverse a Def-Use Path

in black box testing. The goal of this research is to identify
a sequence of functions Fi from F that when executed in the
identified order will cover as many paths in CTP as possible.

Given a software system consisting of multiple objects, its
system state at a given point in time is defined to be the
state of each object at that time. Suppose a program is in
some initial system state SS0 and suppose an external func-
tion F1 is executed with some choice of values for any of its
input parameters. Depending on the object states identified
by SS0, and depending on the values chosen for any input
parameters, traversal of a subset of paths in EXT will be
initiated. Since none of the paths in EXT have any rest
states, each path will be traversed to its ending transition
node. But, by construction of such paths, this node may
be the head definition node of a number of def-use paths in
CTP, each of which will be initiated and traversed up to its
first rest state. If a path in CTP has no rest states, then the
entire def-use path will be completed and one can conclude
that execution of F1 covers all such paths. At the completion
of all triggered transitions identified by these paths, the soft-
ware system will be in a new system state SS1. The tester
could then execute a second external function F2 to initiate
another subset of ext-int paths from EXT. Some of these
paths may then, in turn, initiate a set of new def-use paths
from CTP. In addition, every execution of a transition in
the middle of an ext-int path, or in the middle of a leg be-
tween rest states of a def-use path, may call functions that
trigger the next transition in a previously initiated def-use
path that is currently in a rest state. Figure 4 presents the
possibilities of choosing successive functions from F to initi-
ate new EXT paths, which in turn initiate new CTP paths
or force traversal along existing CTP paths to the next rest
state. Rest state nodes in a def-use path are labeled r, and
transition nodes that force traversal from a rest state to a
new leg in a def-use path are labeled t.

An external function Fi may initiate multiple paths in EXT
and each EXT path may initiate or extend multiple paths
in CTP. Many of these paths will be mutually inconsis-
tent. Some will have contradictory guard predicates, some
will violate the state compatibility rule for paths, and some
will re-define a variable that has already been defined by
a definition node at the head of a def-use path. It will be
necessary to analyze, very carefully, all initiated paths one

r


t


r


r


t


r
r


t


F

1


F

n


F

2


SS

0


SS

n-1


SS

1


External


Functions


F


System


States


SS


ext-int


Paths


EXT


def-use


Paths


CTP


Figure 4: Generating an External Test Sequence

transition at a time. This analysis will remove from further
consideration at this step in test sequence generation paths
that produce inconsistencies in the parallel traversal of all
initiated paths. At each step in this process, the following
actions must be taken:

• Identify one guard predicate to be satisfied when a
choice of guard nodes appear in simultaneous paths

• Delete all paths with guard nodes for the same function
that differ from the selected guard

• Identify and delete any combined ext-int-def-use paths
that violate the state compatibility rule

• Delete any paths currently in a rest state whose next
action is inconsistent with any triggered transition up
to this point in the analysis

• Identify and delete any combined ext-int-def-use paths
that are currently at a rest state, but for which the
triggered actions of the current external function result
in re-definition of the def variable



Deleted def-use paths are not lost forever. They may reap-
pear later after execution of a subsequent external function,
possibly with different input parameter values, and with se-
lection of new EXT paths that may re-initiate the desired
path. This time, subsequent actions may cause complete
traversal to the use node of this def-use path. We have devel-
oped a tool that helps a human tester make the above choices
in a way that allows maximal coverage of un-traversed def-
use paths. The human tester merely responds to questions
about which guard predicates are to be satisfied at each
step of the process; the tool presents only feasible choices
and handles all other aspects of the process.

Consider the set of ext-int-def-use paths that have been ini-
tiated by execution of previous functions in a test sequence
and remain undeleted and uncompleted after the triggered
effects of function Fi. Call this set ATP for active test paths.
The algorithm for test sequence generation considers every
external function that could be executed during the cur-
rent system state, SSi−1, and counts the number of feasi-
ble, untested, paths in EXT x CTP that might be initiated,
and the number of paths in EXT x ATP that might be pro-
gressed along the next leg. With knowledge of these counts,
a human tester can choose the next external function Fi+1

that has the best possibility of maximizing these counts to-
ward covering the most remaining untraversed def-use paths.
Further research may help to automate this existing human
role in test sequence generation.

After completion of the analysis of the triggered effects of
each external function call Fi, the tool records two pieces of
information:

• The set of def-use paths covered by Fi

• The expected system state SSi, after stepping through
all intermediate transitions in the identified paths.

The construction of test sequences continues until as many
def-use paths as possible have been completely traversed
from def to use. In some cases this may involve construc-
tion of multiple test sequences, each starting with a different
initial system state. In other cases, a single test sequence
may suffice to cover all def-use paths in CTP. In either
case the set of executable test sequences generated by this
process determines a test suite for integration testing of the
test component with the remainder of the system. When an
implementation claiming to implement the specification is
tested, each test sequence in a test suite is executed against
the implementation. After the triggered effects of each Fi,
the implementation should be in the system state predicted
by SSi. If an implementation fails to be in the predicted
system state after each Fi, it fails the test sequence. An
implementation passes the test suite if each test sequence in
the test suite is completed with no test sequence failures.

6. TEST ARCHITECTURE
Consider the testing architecture presented in Figure 5. The
combined class state machine of the software system speci-
fication is represented in a database of six relational tables.
The tables represent the Classes, Variables, Functions,
Parameters, States, and Transitions of the combined

Java


Rapid Prototyping


Machine


Test Suite


Generator


Test


Harness


Graphical


User Interaface


Executable


Test


Sequences


Java Imp


of Spec


DB Rep


of Spec


Figure 5: Test Tool Architecture

class state machine. Upon choosing a component of the
system for integration testing, the Test Sequence Genera-
tor constructs the component flow graph and follows the
processes described in Sections 2 through 5 to generate one
or more sequences {(Fi, SSi)|i = 1, ..., n} of executable ex-
ternal functions and predicted system states, both repre-
sented by Executable Test Sequences in the figure. The
Test Harness imports an executable test sequence with pre-
dicted system states, executes each test against a claimed
implementation of the specification, and determines if the
implementation passes or fails the test sequence by checking
the actual system states against the predicted states.

The Java Rapid Prototype Machine reads a database rep-
resentation of a finite-state specification, and produces a
generic test simulator written in Java. The machine consists
of a simple kernel that is able to wait for, queue, and process
input tasks from either a user or from the Test Harness. An
input task is codified as an instance of a Java wrapper class
that stores data fields traditionally associated with object-
oriented programming, such as an objects identity, state,
and behavior, applied to that object (a function). The ob-
ject in question is an instance of a class defined by the tables
of the database representation. An interpreter evaluates an
input task and queries the database representation to sim-
ulate the actions of each defined transition. The resulting
Java reference implementation provides an optional Graph-
ical User Interface for test writers to add visual components
for simulation purposes. The Test Harness is designed to
support testers who want to run a sequence of test cases
under the reference implementation, or against a real imple-
mentation inserted into the testing architecture in place of
the reference implementation.

7. CONCLUSIONS
This paper has presented technical details about an auto-
mated tool to support integration testing of object-oriented
software. The assumed test scenario is that a new or mod-
ified class is being integrated into an existing collection of
classes (such as a component or system). The classes are
represented as interacting finite state machines, which model
the information that is normally included in design models
such as UML statecharts, and augmented with details about
definitions and uses of class variables. This augmentation is
currently done by hand, but this information could be ob-



tained by a detailed analysis of the implementation.

The combined class state machine and component flow graph
are new to this research, and this paper describes in detail
how the behavior of OO software is represented in them
and details for how they are constructed. The test criteria
used are based on traditional data flow criteria, but apply-
ing them to these types of models is new and introduces nu-
merous complexities. This paper describes how this model
works with specific examples.

The use of a database to store definition/use information
simplifies the construction of full DU-paths from definitions
to uses. Storing and manipulating complete path predicates
for traditional code-based data flow is impractical due to
size. The database allows these potentially large predicates
to be managed efficiently.

As with any automated test systems, undecidable problems
prohibit complete solutions. In this research, some can-
didate test paths cannot be resolved into executable test
cases. This sometimes happens because resolving the test
paths is too complicated, and sometimes because they repre-
sent truly undecidable portions of the problem space. This
problem is common to all automatic test data generation
techniques.

Future research will focus on additional automation of ex-
isting manual steps in this methodology. Translation of
software specifications into the database representation can
be better automated, as can identification of non-feasible
path segments in the component flow graph, which should
be avoided in def-use and ext-int path construction. Addi-
tional tester support for choosing the best external method
to call in test sequence construction is also desirable.

8. ACKNOWLEDGMENTS
We would like to thank Tony Cincotta for implementing the
rapid prototyping machine and the test harness, and Julie
Zanon, Hankim Ngo and Boris Etho-Assoumou for different
features of a web application that implements the algorithms
of the test suite generator.

9. REFERENCES
[1] B. Binder. Testing Object-oriented Systems.

Addison-Wesley Publishing Company Inc., New York,
New York, 2000.

[2] G. Booch. Object-Oriented Design With Applications.
Benjamin-Cummings Publishing Co. Inc., Reading,
MA, 1991.

[3] M.-H. Chen and M.-H. Kao. Testing object-oriented
programs - an integrated approach. In Proceedings of
the 10th International Symposium on Software
Reliability Engineering, pages 73–83, Boca Raton, FL,
November 1999. IEEE Computer Society Press.

[4] T. Chow. Testing software designs modeled by
finite-state machines. IEEE Transactions on Software
Engineering, SE-4(3):178–187, May 1978.

[5] P. G. Frankl and E. J. Weyuker. An applicable family
of data flow testing criteria. IEEE Transactions on

Software Engineering, 14(10):1483–1498, October
1988.

[6] L. Gallagher and A. J. Offutt. Integration testing of
object-oriented components using finite state
machines. The Journal of Software Testing,
Verification, and Reliability, 2006. to appear.

[7] P. Herman. A data flow analysis approach to program
testing. Australian Computer Journal, 8(3):92–96,
November 1976.

[8] H. W. Hong, Y. R. Kwon, and S. D. Cha. Testing of
object-oriented programs based on finite state
machines. In Proceedings of the Asia-Pacific Software
Engineering Conference, pages 234–241, Brisbane,
Australia, 1995.

[9] J. Laski. On data flow guided program testing. Sigplan
Notices, 17(9), September 1982.

[10] S. Rapps and E. J. Weyuker. Data flow analysis
techniques for test data selection. In Software
Engineering 6th International Conference. IEEE
Computer Society Press, 1982.

[11] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen. Object Oriented Modeling and Design.
Prentice Hall, 1991.

[12] C. D. Turner and D. J. Robson. The state-based
testing of object-oriented programs. In Proceedings of
the 1993 IEEE Conference on Software Maintenance
(CSM-93), pages 302–310, Montreal, Quebec, Canada,
September 1993.

[13] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit
test coverage and adequacy. ACM Computing Surveys,
29(4):366–427, December 1997.


